vector包含着一系列连续存储的元素,其行为和数组类似,但可以动态增长。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 |
// Vector implementation -*- C++ -*- // Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_vector.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _VECTOR_H #define _VECTOR_H 1 #include <bits/stl_iterator_base_funcs.h> #include <bits/functexcept.h> #include <bits/concept_check.h> namespace _GLIBCXX_STD { /** * @if maint * See bits/stl_deque.h's _Deque_base for an explanation. * @endif */ template<typename _Tp, typename _Alloc> struct _Vector_base { struct _Vector_impl : public _Alloc { _Tp* _M_start; _Tp* _M_finish; _Tp* _M_end_of_storage; _Vector_impl (_Alloc const& __a) : _Alloc(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0) { } }; public: typedef _Alloc allocator_type; allocator_type get_allocator() const { return *static_cast<const _Alloc*>(&this->_M_impl); } _Vector_base(const allocator_type& __a) : _M_impl(__a) { } _Vector_base(size_t __n, const allocator_type& __a) : _M_impl(__a) { this->_M_impl._M_start = this->_M_allocate(__n); this->_M_impl._M_finish = this->_M_impl._M_start; this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; } ~_Vector_base() { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); } public: _Vector_impl _M_impl; _Tp* _M_allocate(size_t __n) { return _M_impl.allocate(__n); } void _M_deallocate(_Tp* __p, size_t __n) { if (__p) _M_impl.deallocate(__p, __n); } }; /** * @brief A standard container which offers fixed time access to * individual elements in any order. * * @ingroup Containers * @ingroup Sequences * * Meets the requirements of a <a href="tables.html#65">container</a>, a * <a href="tables.html#66">reversible container</a>, and a * <a href="tables.html#67">sequence</a>, including the * <a href="tables.html#68">optional sequence requirements</a> with the * %exception of @c push_front and @c pop_front. * * In some terminology a %vector can be described as a dynamic * C-style array, it offers fast and efficient access to individual * elements in any order and saves the user from worrying about * memory and size allocation. Subscripting ( @c [] ) access is * also provided as with C-style arrays. */ template<typename _Tp, typename _Alloc = allocator<_Tp> > class vector : protected _Vector_base<_Tp, _Alloc> { // Concept requirements. __glibcxx_class_requires(_Tp, _SGIAssignableConcept) typedef _Vector_base<_Tp, _Alloc> _Base; typedef vector<_Tp, _Alloc> vector_type; public: typedef _Tp value_type; typedef typename _Alloc::pointer pointer; typedef typename _Alloc::const_pointer const_pointer; typedef typename _Alloc::reference reference; typedef typename _Alloc::const_reference const_reference; typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator; typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type> const_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef typename _Base::allocator_type allocator_type; protected: /** @if maint * These two functions and three data members are all from the * base class. They should be pretty self-explanatory, as * %vector uses a simple contiguous allocation scheme. @endif */ using _Base::_M_allocate; using _Base::_M_deallocate; using _Base::_M_impl; public: // [23.2.4.1] construct/copy/destroy // (assign() and get_allocator() are also listed in this section) /** * @brief Default constructor creates no elements. */ explicit vector(const allocator_type& __a = allocator_type()) : _Base(__a) { } /** * @brief Create a %vector with copies of an exemplar element. * @param n The number of elements to initially create. * @param value An element to copy. * * This constructor fills the %vector with @a n copies of @a value. */ vector(size_type __n, const value_type& __value, const allocator_type& __a = allocator_type()) : _Base(__n, __a) { this->_M_impl._M_finish = std::uninitialized_fill_n(this->_M_impl._M_start, __n, __value); } /** * @brief Create a %vector with default elements. * @param n The number of elements to initially create. * * This constructor fills the %vector with @a n copies of a * default-constructed element. */ explicit vector(size_type __n) : _Base(__n, allocator_type()) { this->_M_impl._M_finish = std::uninitialized_fill_n(this->_M_impl._M_start, __n, value_type()); } /** * @brief %Vector copy constructor. * @param x A %vector of identical element and allocator types. * * The newly-created %vector uses a copy of the allocation * object used by @a x. All the elements of @a x are copied, * but any extra memory in * @a x (for fast expansion) will not be copied. */ vector(const vector& __x) : _Base(__x.size(), __x.get_allocator()) { this->_M_impl._M_finish = std::uninitialized_copy(__x.begin(), __x.end(), this->_M_impl._M_start); } /** * @brief Builds a %vector from a range. * @param first An input iterator. * @param last An input iterator. * * Create a %vector consisting of copies of the elements from * [first,last). * * If the iterators are forward, bidirectional, or * random-access, then this will call the elements' copy * constructor N times (where N is distance(first,last)) and do * no memory reallocation. But if only input iterators are * used, then this will do at most 2N calls to the copy * constructor, and logN memory reallocations. */ template<typename _InputIterator> vector(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Base(__a) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } /** * The dtor only erases the elements, and note that if the * elements themselves are pointers, the pointed-to memory is * not touched in any way. Managing the pointer is the user's * responsibilty. */ ~vector() { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish); } /** * @brief %Vector assignment operator. * @param x A %vector of identical element and allocator types. * * All the elements of @a x are copied, but any extra memory in * @a x (for fast expansion) will not be copied. Unlike the * copy constructor, the allocator object is not copied. */ vector& operator=(const vector& __x); /** * @brief Assigns a given value to a %vector. * @param n Number of elements to be assigned. * @param val Value to be assigned. * * This function fills a %vector with @a n copies of the given * value. Note that the assignment completely changes the * %vector and that the resulting %vector's size is the same as * the number of elements assigned. Old data may be lost. */ void assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); } /** * @brief Assigns a range to a %vector. * @param first An input iterator. * @param last An input iterator. * * This function fills a %vector with copies of the elements in the * range [first,last). * * Note that the assignment completely changes the %vector and * that the resulting %vector's size is the same as the number * of elements assigned. Old data may be lost. */ template<typename _InputIterator> void assign(_InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_assign_dispatch(__first, __last, _Integral()); } /// Get a copy of the memory allocation object. using _Base::get_allocator; // iterators /** * Returns a read/write iterator that points to the first * element in the %vector. Iteration is done in ordinary * element order. */ iterator begin() { return iterator (this->_M_impl._M_start); } /** * Returns a read-only (constant) iterator that points to the * first element in the %vector. Iteration is done in ordinary * element order. */ const_iterator begin() const { return const_iterator (this->_M_impl._M_start); } /** * Returns a read/write iterator that points one past the last * element in the %vector. Iteration is done in ordinary * element order. */ iterator end() { return iterator (this->_M_impl._M_finish); } /** * Returns a read-only (constant) iterator that points one past * the last element in the %vector. Iteration is done in * ordinary element order. */ const_iterator end() const { return const_iterator (this->_M_impl._M_finish); } /** * Returns a read/write reverse iterator that points to the * last element in the %vector. Iteration is done in reverse * element order. */ reverse_iterator rbegin() { return reverse_iterator(end()); } /** * Returns a read-only (constant) reverse iterator that points * to the last element in the %vector. Iteration is done in * reverse element order. */ const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } /** * Returns a read/write reverse iterator that points to one * before the first element in the %vector. Iteration is done * in reverse element order. */ reverse_iterator rend() { return reverse_iterator(begin()); } /** * Returns a read-only (constant) reverse iterator that points * to one before the first element in the %vector. Iteration * is done in reverse element order. */ const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // [23.2.4.2] capacity /** Returns the number of elements in the %vector. */ size_type size() const { return size_type(end() - begin()); } /** Returns the size() of the largest possible %vector. */ size_type max_size() const { return size_type(-1) / sizeof(value_type); } /** * @brief Resizes the %vector to the specified number of elements. * @param new_size Number of elements the %vector should contain. * @param x Data with which new elements should be populated. * * This function will %resize the %vector to the specified * number of elements. If the number is smaller than the * %vector's current size the %vector is truncated, otherwise * the %vector is extended and new elements are populated with * given data. */ void resize(size_type __new_size, const value_type& __x) { if (__new_size < size()) erase(begin() + __new_size, end()); else insert(end(), __new_size - size(), __x); } /** * @brief Resizes the %vector to the specified number of elements. * @param new_size Number of elements the %vector should contain. * * This function will resize the %vector to the specified * number of elements. If the number is smaller than the * %vector's current size the %vector is truncated, otherwise * the %vector is extended and new elements are * default-constructed. */ void resize(size_type __new_size) { resize(__new_size, value_type()); } /** * Returns the total number of elements that the %vector can * hold before needing to allocate more memory. */ size_type capacity() const { return size_type(const_iterator(this->_M_impl._M_end_of_storage) - begin()); } /** * Returns true if the %vector is empty. (Thus begin() would * equal end().) */ bool empty() const { return begin() == end(); } /** * @brief Attempt to preallocate enough memory for specified number of * elements. * @param n Number of elements required. * @throw std::length_error If @a n exceeds @c max_size(). * * This function attempts to reserve enough memory for the * %vector to hold the specified number of elements. If the * number requested is more than max_size(), length_error is * thrown. * * The advantage of this function is that if optimal code is a * necessity and the user can determine the number of elements * that will be required, the user can reserve the memory in * %advance, and thus prevent a possible reallocation of memory * and copying of %vector data. */ void reserve(size_type __n); // element access /** * @brief Subscript access to the data contained in the %vector. * @param n The index of the element for which data should be * accessed. * @return Read/write reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and * out_of_range lookups are not defined. (For checked lookups * see at().) */ reference operator[](size_type __n) { return *(begin() + __n); } /** * @brief Subscript access to the data contained in the %vector. * @param n The index of the element for which data should be * accessed. * @return Read-only (constant) reference to data. * * This operator allows for easy, array-style, data access. * Note that data access with this operator is unchecked and * out_of_range lookups are not defined. (For checked lookups * see at().) */ const_reference operator[](size_type __n) const { return *(begin() + __n); } protected: /// @if maint Safety check used only from at(). @endif void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_out_of_range(__N("vector::_M_range_check")); } public: /** * @brief Provides access to the data contained in the %vector. * @param n The index of the element for which data should be * accessed. * @return Read/write reference to data. * @throw std::out_of_range If @a n is an invalid index. * * This function provides for safer data access. The parameter * is first checked that it is in the range of the vector. The * function throws out_of_range if the check fails. */ reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } /** * @brief Provides access to the data contained in the %vector. * @param n The index of the element for which data should be * accessed. * @return Read-only (constant) reference to data. * @throw std::out_of_range If @a n is an invalid index. * * This function provides for safer data access. The parameter * is first checked that it is in the range of the vector. The * function throws out_of_range if the check fails. */ const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } /** * Returns a read/write reference to the data at the first * element of the %vector. */ reference front() { return *begin(); } /** * Returns a read-only (constant) reference to the data at the first * element of the %vector. */ const_reference front() const { return *begin(); } /** * Returns a read/write reference to the data at the last * element of the %vector. */ reference back() { return *(end() - 1); } /** * Returns a read-only (constant) reference to the data at the * last element of the %vector. */ const_reference back() const { return *(end() - 1); } // [23.2.4.3] modifiers /** * @brief Add data to the end of the %vector. * @param x Data to be added. * * This is a typical stack operation. The function creates an * element at the end of the %vector and assigns the given data * to it. Due to the nature of a %vector this operation can be * done in constant time if the %vector has preallocated space * available. */ void push_back(const value_type& __x) { if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage) { std::_Construct(this->_M_impl._M_finish, __x); ++this->_M_impl._M_finish; } else _M_insert_aux(end(), __x); } /** * @brief Removes last element. * * This is a typical stack operation. It shrinks the %vector by one. * * Note that no data is returned, and if the last element's * data is needed, it should be retrieved before pop_back() is * called. */ void pop_back() { --this->_M_impl._M_finish; std::_Destroy(this->_M_impl._M_finish); } /** * @brief Inserts given value into %vector before specified iterator. * @param position An iterator into the %vector. * @param x Data to be inserted. * @return An iterator that points to the inserted data. * * This function will insert a copy of the given value before * the specified location. Note that this kind of operation * could be expensive for a %vector and if it is frequently * used the user should consider using std::list. */ iterator insert(iterator __position, const value_type& __x); /** * @brief Inserts a number of copies of given data into the %vector. * @param position An iterator into the %vector. * @param n Number of elements to be inserted. * @param x Data to be inserted. * * This function will insert a specified number of copies of * the given data before the location specified by @a position. * * Note that this kind of operation could be expensive for a * %vector and if it is frequently used the user should * consider using std::list. */ void insert(iterator __position, size_type __n, const value_type& __x) { _M_fill_insert(__position, __n, __x); } /** * @brief Inserts a range into the %vector. * @param position An iterator into the %vector. * @param first An input iterator. * @param last An input iterator. * * This function will insert copies of the data in the range * [first,last) into the %vector before the location specified * by @a pos. * * Note that this kind of operation could be expensive for a * %vector and if it is frequently used the user should * consider using std::list. */ template<typename _InputIterator> void insert(iterator __position, _InputIterator __first, _InputIterator __last) { // Check whether it's an integral type. If so, it's not an iterator. typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_insert_dispatch(__position, __first, __last, _Integral()); } /** * @brief Remove element at given position. * @param position Iterator pointing to element to be erased. * @return An iterator pointing to the next element (or end()). * * This function will erase the element at the given position and thus * shorten the %vector by one. * * Note This operation could be expensive and if it is * frequently used the user should consider using std::list. * The user is also cautioned that this function only erases * the element, and that if the element is itself a pointer, * the pointed-to memory is not touched in any way. Managing * the pointer is the user's responsibilty. */ iterator erase(iterator __position); /** * @brief Remove a range of elements. * @param first Iterator pointing to the first element to be erased. * @param last Iterator pointing to one past the last element to be * erased. * @return An iterator pointing to the element pointed to by @a last * prior to erasing (or end()). * * This function will erase the elements in the range [first,last) and * shorten the %vector accordingly. * * Note This operation could be expensive and if it is * frequently used the user should consider using std::list. * The user is also cautioned that this function only erases * the elements, and that if the elements themselves are * pointers, the pointed-to memory is not touched in any way. * Managing the pointer is the user's responsibilty. */ iterator erase(iterator __first, iterator __last); /** * @brief Swaps data with another %vector. * @param x A %vector of the same element and allocator types. * * This exchanges the elements between two vectors in constant time. * (Three pointers, so it should be quite fast.) * Note that the global std::swap() function is specialized such that * std::swap(v1,v2) will feed to this function. */ void swap(vector& __x) { std::swap(this->_M_impl._M_start, __x._M_impl._M_start); std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); std::swap(this->_M_impl._M_end_of_storage, __x._M_impl._M_end_of_storage); } /** * Erases all the elements. Note that this function only erases the * elements, and that if the elements themselves are pointers, the * pointed-to memory is not touched in any way. Managing the pointer is * the user's responsibilty. */ void clear() { erase(begin(), end()); } protected: /** * @if maint * Memory expansion handler. Uses the member allocation function to * obtain @a n bytes of memory, and then copies [first,last) into it. * @endif */ template<typename _ForwardIterator> pointer _M_allocate_and_copy(size_type __n, _ForwardIterator __first, _ForwardIterator __last) { pointer __result = this->_M_allocate(__n); try { std::uninitialized_copy(__first, __last, __result); return __result; } catch(...) { _M_deallocate(__result, __n); __throw_exception_again; } } // Internal constructor functions follow. // Called by the range constructor to implement [23.1.1]/9 template<typename _Integer> void _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type) { this->_M_impl._M_start = _M_allocate(__n); this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; this->_M_impl._M_finish = std::uninitialized_fill_n(this->_M_impl._M_start, __n, __value); } // Called by the range constructor to implement [23.1.1]/9 template<typename _InputIterator> void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; _M_range_initialize(__first, __last, _IterCategory()); } // Called by the second initialize_dispatch above template<typename _InputIterator> void _M_range_initialize(_InputIterator __first, _InputIterator __last, input_iterator_tag) { for ( ; __first != __last; ++__first) push_back(*__first); } // Called by the second initialize_dispatch above template<typename _ForwardIterator> void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { size_type __n = std::distance(__first, __last); this->_M_impl._M_start = this->_M_allocate(__n); this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; this->_M_impl._M_finish = std::uninitialized_copy(__first, __last, this->_M_impl._M_start); } // Internal assign functions follow. The *_aux functions do the actual // assignment work for the range versions. // Called by the range assign to implement [23.1.1]/9 template<typename _Integer> void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign(static_cast<size_type>(__n), static_cast<value_type>(__val)); } // Called by the range assign to implement [23.1.1]/9 template<typename _InputIterator> void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; _M_assign_aux(__first, __last, _IterCategory()); } // Called by the second assign_dispatch above template<typename _InputIterator> void _M_assign_aux(_InputIterator __first, _InputIterator __last, input_iterator_tag); // Called by the second assign_dispatch above template<typename _ForwardIterator> void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag); // Called by assign(n,t), and the range assign when it turns out // to be the same thing. void _M_fill_assign(size_type __n, const value_type& __val); // Internal insert functions follow. // Called by the range insert to implement [23.1.1]/9 template<typename _Integer> void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val, __true_type) { _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<value_type>(__val)); } // Called by the range insert to implement [23.1.1]/9 template<typename _InputIterator> void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory; _M_range_insert(__pos, __first, __last, _IterCategory()); } // Called by the second insert_dispatch above template<typename _InputIterator> void _M_range_insert(iterator __pos, _InputIterator __first, _InputIterator __last, input_iterator_tag); // Called by the second insert_dispatch above template<typename _ForwardIterator> void _M_range_insert(iterator __pos, _ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag); // Called by insert(p,n,x), and the range insert when it turns out to be // the same thing. void _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); // Called by insert(p,x) void _M_insert_aux(iterator __position, const value_type& __x); }; /** * @brief Vector equality comparison. * @param x A %vector. * @param y A %vector of the same type as @a x. * @return True iff the size and elements of the vectors are equal. * * This is an equivalence relation. It is linear in the size of the * vectors. Vectors are considered equivalent if their sizes are equal, * and if corresponding elements compare equal. */ template<typename _Tp, typename _Alloc> inline bool operator==(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return __x.size() == __y.size() && std::equal(__x.begin(), __x.end(), __y.begin()); } /** * @brief Vector ordering relation. * @param x A %vector. * @param y A %vector of the same type as @a x. * @return True iff @a x is lexicographically less than @a y. * * This is a total ordering relation. It is linear in the size of the * vectors. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template<typename _Tp, typename _Alloc> inline bool operator<(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return std::lexicographical_compare(__x.begin(), __x.end(), __y.begin(), __y.end()); } /// Based on operator== template<typename _Tp, typename _Alloc> inline bool operator!=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__x == __y); } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator>(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return __y < __x; } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator<=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__y < __x); } /// Based on operator< template<typename _Tp, typename _Alloc> inline bool operator>=(const vector<_Tp,_Alloc>& __x, const vector<_Tp,_Alloc>& __y) { return !(__x < __y); } /// See std::vector::swap(). template<typename _Tp, typename _Alloc> inline void swap(vector<_Tp,_Alloc>& __x, vector<_Tp,_Alloc>& __y) { __x.swap(__y); } } // namespace std #endif /* _VECTOR_H */ |