考虑下面两个设计问题:
· 作为一位立志献身计算机科学的学生,你想设计一个类来表示对象的堆栈。这将需要多个不同的类,因为每个堆栈中的元素必须是同类的,即,它里面包含的必须只是同种类型的对象。例如,会有一个类来表示int的堆栈,第二个类来表示string的堆栈,第三个类来表示string的堆栈的堆栈,等等。你也许对设计一个最小的类接口(争取使类的接口完整并且最小)很感兴趣,所以会将对堆栈的操作限制在:创建堆栈,销毁堆栈,将对象压入堆栈,将对象弹出堆栈,以及检查堆栈是否为空。设计中,你不会借助标准库中的类(包括stack —-熟悉标准库),因为你渴望亲手写这些代码。重用(Reuse)是一件美事,但当你的目标是探究事情的工作原理时,那就只有挖地三尺了。
· 作为一位爱猫的宠物迷,你想设计一个类来表示猫。这也将需要多个不同的类,因为每个品种的猫都会有点不同。和所有对象一样,猫可以被创建和销毁,但,正如所有猫迷所知道的,猫所做的其它事不外乎吃和睡。然而,每一种猫吃和睡都有各自惹人喜爱的方式。
这两个问题的说明听起来很相似,但却导致完全不同的两种设计。为什么?
答案涉及到”类的行为” 和 “类所操作的对象的类型”之间的关系。对于堆栈和猫来说,要处理的都是各种不同的类型(堆栈包含类型为T的对象,猫则为品种T),但你必须问自己这样一个问题:类型T影响类的行为吗?如果T不影响行为,你可以使用模板。如果T影响行为,你就需要虚函数,从而要使用继承。
下面的代码通过定义一个链表来实现Stack类,假设堆栈的对象类型为T:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
class Stack { public: Stack(); ~Stack(); void push(const T& object); T pop(); bool empty() const;???????????? // 堆栈为空? private: struct StackNode {????????????? // 链表节点 T data;?????????????????????? // 此节点数据 StackNode *next;????????????? // 链表中下一节点 // StackNode构造函数,初始化两个域 StackNode(const T& newData, StackNode *nextNode) : data(newData), next(nextNode) {} }; StackNode *top;???????????????? // 堆栈顶部 Stack(const Stack& rhs);?????????????? // 防止拷贝和 Stack& operator=(const Stack& rhs);??? // 赋值(如果不想使用隐式生成的函数就要显式地禁止它) }; |
于是,Stack对象将构造如下所示的数据结构:
Stack对象 top–> data+next–> data+next–> data+next–> data+next
————————————————————————————
StackNode对象
链表本身是由StackNode对象构成的,但那只是Stack类的一个实现细节,所以StackNode被声明为Stack的私有类型。注意StackNode有一个构造函数,用来确保它所有的域都被正确初始化。即使你闭着眼睛都可以写出一个链表,但也不要忽视了C++的一些新特性,如struct中的构造函数。
下面看看你对Stack成员函数的实现。和许多原型(prototype)的实现(离制作成软件产品相差太远)一样,这里没有错误检查,因为在原型世界里,没有东西会出错。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
Stack::Stack(): top(0) {}????? // 顶部初始化为null void Stack::push(const T& object) { top = new StackNode(object, top);??? // 新节点放在 }????????????????????????????????????? // 链表头部 T Stack::pop() { StackNode *topOfStack = top;??? // 记住头节点 top = top->next; T data = topOfStack->data;????? // 记住节点数据 delete topOfStack; return data; } Stack::~Stack()?????????????????? // 删除堆栈中所有对象 { while (top) { StackNode *toDie = top;?????? // 得到头节点指针 top = top->next;????????????? // 移向下一节点 delete toDie;???????????????? // 删除前面的头节点 } } bool Stack::empty() const { return top == 0; } |
这些代码毫无吸引人之处。实际上,唯一有趣的一点在于:即使对T一无所知,你还是能够写出每个成员函数。(上面的代码中实际上有个假设,即,假设可以调用T的拷贝构造函数;但正如弄清C++在幕后为你所写、所调用的函数所说明的,这是一个绝对合理的假设)不管T是什么,对构造,销毁,压栈,出栈,确定栈是否为空等操作所写的代码不会变。除了 “可以调用T的拷贝构造函数” 这一假设外,stack的行为在任何地方都不依赖于T。这就是模板类的特点:行为不依赖于类型。
将stack类转化成一个模板就很简单了,即使是Dilbert的老板都会写:
1 2 3 4 5 |
template<class T> class Stack { ...????????????????????????? // 完全和上面相同 }; |
但是,猫呢?为什么猫不适合模板?
重读上面的说明,注意这一条:”每一种猫吃和睡都有各自惹人喜爱的方式”。这意味着必须为每种不同的猫实现不同的行为。不可能写一个函数来处理所有的猫,所能做的只能是制定一个函数接口,所有种类的猫都必须实现它。啊哈!衍生一个函数接口的方法只能是去声明一个纯虚函数(区分接口继承和实现继承):
1 2 3 4 5 6 7 |
class Cat { public: virtual ~Cat();???????????????????? // 参见条款14 virtual void eat() = 0;???????????? // 所有的猫吃食 virtual void sleep() = 0;?????????? // 所有的猫睡觉 }; |
Cat的子类 —- 比如,Siamese和BritishShortHairedTabby —- 当然得重新定义继承而来的eat和sleep函数接口:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
class Siamese: public Cat { public: void eat(); void sleep(); ... }; class BritishShortHairedTabby: public Cat { public: void eat(); void sleep(); ... }; |
好了,现在知道了为什么模板适合Stack类而不适合Cat类,也知道了为什么继承适合Cat类。唯一剩下的问题是,为什么继承不适合Stack类。想知道为什么,不妨试着去声明一个Stack层次结构的根类 —- 所有其它的堆栈类都从这个唯一的类继承:
1 2 3 4 5 6 7 8 |
class Stack {????? // a stack of anything public: virtual void push(const ??? object) = 0; virtual ??? pop() = 0; ... }; |
现在问题很明显了。该为纯虚函数push和pop声明什么类型呢?记住,每一个子类必须重新声明继承而来的虚函数,而且参数类型和返回类型都要和基类的声明完全相同。不幸的是,一个int堆栈只能压入和弹出int对象,而一个Cat堆栈只能压入和弹出Cat对象。Stack类要怎样声明它的纯虚函数才能使用户既可以创建出int堆栈又可以创建出Cat堆栈呢?冷酷而严峻的事实是,做不到。这就是为什么说继承不适合创建堆栈。
但也许你做事喜欢偷偷摸摸。或许你认为自己可以通过使用通用(void*)指针来骗过编译器。但事实证明,现在这种情况下,通用指针也帮不上忙。因为你无法避开这一条件:派生类虚函数的声明永远不能和它在基类中的声明相抵触。但是,通用指针可以帮助解决另外一个不同的问题,它和模板所生成的类的效率有关。详细介绍明智地使用私有继承。
讲完了堆栈和猫,下面将本条款得到的结论总结如下:
· 当对象的类型不影响类中函数的行为时,就要使用模板来生成这样一组类。
· 当对象的类型影响类中函数的行为时,就要使用继承来得到这样一组类。
真正消化了以上两点的含义,你就可以在设计中游刃于继承或模板之间。